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Abstract

Animal visual systems have solved the problem of limited resources by allocating more processing power to central than

peripheral vision. Foveation considerably reduces the amount of data per image by progressively decreasing the resolution at the

periphery while retaining a sharp center of interest. This strategy has important applications in the design of autonomous systems

for navigation, tracking and surveillance. Central to foveation is a space-variant Gaussian filtering scheme that gradually blurs out

details as the distance to the image center increases. Unfortunately Gaussian convolution is a computationally expensive operation,

which can severely limit the real-time applicability of foveation. In the space-variant case, the problem is even more difficult as

traditional techniques such as the fast Fourier transform cannot be employed because the convolution kernel is different at each

pixel. We show that recursive filtering, which was introduced to approximate Gaussian convolution, can be extended to the space-

variant case and leads to a very simple implementation that makes it ideal for that application. Three main recursive algorithms have

emerged, produced by independent derivation methods. We assess and compare their performance in traditional filtering

applications and in our specific space-variant case. All three methods drastically cut down the cost of Gaussian filtering to a limited

number of operations per pixel that is independent of the scale selected. In addition we show that two of those algorithms have

excellent accuracy in that the output they produce differs from the output obtained performing real Gaussian convolution by less

than 1%.

r 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Gaussian filtering has established itself as one of the
most widely used image processing operations in
computer vision as well as biological vision. It is often
a pre-processing step in many feature extraction
techniques [1, 2]. Gaussian functions also play a
predominant part in biological vision modeling [3–6].
The need for a multiscale image representation has long
been recognised in both computer and biological vision.
The recently developed scale-space theory heavily relies
on smoothing Gaussian kernels [7, 8]. Typically in a
multiscale representation framework, an image is con-
volved with Gaussian kernels of different sizes to
produce a set of images at different resolutions.
In the present paper we address a particular multi-

resolution scheme that builds a multiscale representa-
tion within the same image. The centre of the image,
where the point of interest is supposed to be located, has
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high resolution while the sampling appears increasingly
coarser as we go towards the periphery. Such a model is
biologically motivated and is designed to emulate the
size and disposition of receptive fields in the fovea and
retina of primates. This technique possesses attractive
features for real-time visual systems intended to work
at video rates. It allows one to keep a central high-
resolution region of interest while retaining a wide field
of view. It considerably reduces the amount of data to
be processed [9]. Among the many applications that can
benefit from such a concise image representation are
vision systems that are both computationally intensive
and critically time constrained due to their dynamic
nature. Image foveation has notably been proposed for
navigation systems [10–12], video surveillance [13] and
target tracking [14, 15]. The important bandwidth
reduction that can be achieved by foveation has also
spurred research on transmission-based applications such
as videoconferencing or videophones [16, 17]. The large
body of work that has already been carried out includes
research on algorithms [18–20] but also on hardware.
The foveation process can be implemented directly by

specifically designed hardware. Although some effort
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was directed at special lenses [21], most of the research
has concentrated on the sensor array level. CMOS
technology [22–24] has in general been preferred to
CCD [25] mainly because of advantages such as the
possibility of random access to individual pixels, low
cost of production, higher frame rate, easier integration
of sensing and computation on the same chip, etc. [26].
However the design of a CMOS foveated array of
sensors is far from trivial and difficulties include low fill
factor, fixed pattern noise, etc. [23]. While dedicated
hardware has not yet reached commercial stage,
conventional CCD cameras are widely available and
have proven high-quality imaging capabilities. Although
they capture images on a uniformly sampled Cartesian
grid, the foveation can be digitally implemented
provided sufficiently fast algorithms can be applied.
A straightforward method for implementing fovea-

tion consists of filtering the image with Gaussian kernels
in a space-variant manner and then sampling the
resulting image non-uniformly, on a log-polar grid for
example. Each point on this grid can be considered as
the center of a receptive field. The problem with this
scheme is the high computational cost of performing
convolutions. For a convolution kernel of size n � n the
cost is n � n multiplications per pixel. For a separable
kernel, as the Gaussian is, this number can be reduced to
2n: This figure can still be too high especially when the
scale, s; of the Gaussian is large. For a Gaussian of scale
s it is customary to use a kernel of size at least 8s: This
means for example that a Gaussian of scale s ¼ 4 would
already require 2� 8� 4 ¼ 64 multiplications per pixel.
This computational burden could be too heavy for a
real-time visual system that has to perform, in addition
to foveation, other demanding tasks such as motion
computation, object recognition, etc.
Consequently much work has been done on speeding

up Gaussian filtering [27–30]. Among the various
methods investigated, the recursive approximation to
Gaussian filtering has proved the most promising for the
following reasons [31–36]:
(1)
 High degree of accuracy.

(2)
 Low number of operations per pixel.

(3)
 The number of operations per pixel is constant and

does not depend on the scale.

(4)
 The ease with which it is possible to synthesize a

Gaussian of any scale. This is crucial for our
particular application since we want to be able to
vary the scale within the same image in a continuous
manner.
Recursive methods have recently been extended to
include Gabor filtering [37] and anisotropic Gaussian
filtering [38]. Research on recursive Gaussian filtering
has given rise to three main techniques [33,35,36]. The
three techniques were derived using very different
methods. Deriche [33] approximates the Gaussian
function in the space domain, Jin et al. [35] in the z

domain and Vliet et al. [36] in the Fourier domain. They
all use different optimisation techniques.
The objective of this paper is twofold:
(1)
 First we extend the applicability of recursive
Gaussian filtering to the space-variant case. Deriche,
Jin et al. and Vliet et al. only treated the case where
the whole image is convolved with the same
Gaussian kernel. We show that by treating the
filters’ coefficients as variables of space it is possible
to approximate space-variant Gaussian filtering.
(2)
 We assess and compare the performance of the three
recursive techniques. Our main criteria are accuracy
compared to performing the filtering with real
Gaussian kernels and speed taken as the number
of operations required per pixel.
The next section provides a general background on
recursive filtering and describes the filters derived by
Deriche, Jin et al. and Vliet et al. Section 3 explains how
it is possible to make recursive filtering space-variant.
The performance of the three filters are evaluated and
compared in Section 4 and finally Section 5 draws the
general conclusion.
2. Recursive filtering

Although the three methods differ considerably in the
way they were derived and the results they yield, they all
rely on some properties of the z-transform that form the
basis of recursive filtering theory [39].
The filtering of an input xðnÞ by the kernel hðnÞ is

conveniently written as a multiplication in the z domain:

Y ðzÞ ¼ HðzÞX ðzÞ; ð1Þ

where X ðzÞ and H zð Þ are the z-transforms respectively of
xðnÞ and hðnÞ and Y ðzÞ is the z-transform of the output
yðnÞ: If, in addition, the filter HðzÞ can be written as a
ratio of polynomials,

H zð Þ ¼
PN

n¼0 anz�n

1þ
PM

m¼1 bmz�m
; ð2Þ

then, in the space domain, the filtering process can be
written as:

yðnÞ ¼
XN

i¼0

aixðn � iÞ �
XM

i¼1

biyðn � iÞ ð3Þ

which is called a difference equation. It should be noted
that in Eq. (2) the denominator of H zð Þ corresponds to a
recursion while the numerator corresponds to a con-
volution. The problem is that, following the definition of
the z-transform,

HðzÞ ¼
XþN

n¼�N

hðnÞz�n; ð4Þ
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a Gaussian kernel can easily be written as a convolution
only filter, that is, with no denominator.
The challenge of recursive Gaussian filtering is to

approximate the z-transform of a Gaussian by a ratio of
polynomials. This would introduce a recursion and it is
hoped that the recursion will considerably reduce the
convolutive part.

2.1. Deriche filtering [33]

The standard definition of a 1Dimensional (1D)
Gaussian function of scale s is:

gsðnÞ ¼
1

s
ffiffiffiffiffiffi
2p

p exp �
n2

2s2

� �
: ð5Þ

Deriche approximates the causal part (i.e. nX0) of gsðnÞ
by a function of the form:

hþ
s ðnÞ ¼ k a0 cos

w0

s
n

� �
þ a1 sin

w0

s
n

� �n o
exp �

b0

s
n

� �

þ k c0 cos
w1

s
n

� �
þ c1 sin

w1

s
n

� �n o
exp �

b1

s
n

� �
;

ð6Þ

where k ¼ 1=s
ffiffiffiffiffiffi
2p

p
is the normalization constant and

a0; a1; b0; b1; c0; c1;w0;w1 are constants determined using
the optimization procedure E04FCF of the lnag library.
Deriche then uses the property that functions of the
form rn cosðo0nÞ or rn sinðo0nÞ have exact closed-form
z-transforms that are ratio of polynomials [39].
Deriche investigated approximations of the second,
third and fourth order. The higher the order, the higher
the accuracy of the approximation but the higher the
number of operations needed. For our purpose we
found that a third order approximation was enough.
The corresponding z-transform can be written:

Hþ
s ðzÞ ¼

nþ
0 þ nþ

1 z�1 þ nþ
2 z�2

1þ dþ
1 z�1 þ dþ

2 z�2 þ dþ
3 z�3

; ð7Þ

where the coefficients nþ
0 ; nþ

1 ; nþ
2 ; d

þ
1 ; dþ

2 ; dþ
3 are

functions of the parameters a0; a1; b0; b1; c0; c1;
w0; w1:
It should be noted that the + sign in hþ

s ðnÞ and Hþ
s ðzÞ

denotes the fact that those approximations are for the
positive (causal) part of the Gaussian. Deriche deter-
mines the coefficients for the negative (anti-causal) part
by symmetry and taking into account that the point
n ¼ 0 should not be counted twice. The z-transform
of the anti-causal part of the filter takes the form:

H�
s ðzÞ ¼

n�
1 z þ n�

2 z2 þ n�
3 z3

1þ d�
1 z þ d�

2 z2 þ d�
3 z3

; ð8Þ

where the coefficients n�
1 ; n�

2 ; n�
3 ; d�

1 ; d�
2 ; d�

3 can be
deduced from the causal coefficients nþ

0 ; n
þ
1 ; n

þ
2 ;

dþ
1 ; d

þ
2 ; d

þ
3 :
The complete z-transform of the Gaussian approx-
imation is the sum of the causal and anti-causal parts:

HsðzÞ ¼ Hþ
s ðzÞ þ H�

s ðzÞ: ð9Þ

This point is important and determines how the filter is
to be implemented.
The filtering process in the space domain can easily be

derived from the equivalence between Eqs. (2) and (3).
Hþ

s zð Þ determines a left-to-right recursion:

yþðnÞ ¼ nþ0 xðnÞ þ nþ1 xðn � 1Þ þ nþ
2 xðn � 2Þ � dþ

1 yþðn � 1Þ

� dþ
2 yþðn � 2Þ � dþ

3 yþðn � 3Þ ð10Þ

H�
s ðzÞ determines a right-to-left recursion:

y�ðnÞ ¼ n�1 xðn þ 1Þ þ n�2 xðn þ 2Þ þ n�
3 xðn þ 3Þ � d�

1 y�ðn þ 1Þ

� d�
2 y�ðn þ 2Þ � d�

3 y�ðn þ 3Þ ð11Þ

The complete result of the filtering operation is the sum
of the left-to-right and right-to-left recursions:

yðnÞ ¼ yþðnÞ þ y�ðnÞ: ð12Þ

For the readers interested in implementing the filter for
themselves we give the numerical values for the
coefficients in Appendix A. They are derived from the
values provided by Deriche in Ref. [33].

2.2. Jin et al. filtering [35]

While Deriche looked for an approximation to the
Gaussian function in the space domain, Jin et al. carried
out their approximation procedure in the z domain.
Following the definition given in Eqs. (4) and (5), the
z-transform of a Gaussian can readily be obtained:

GsðzÞ ¼ k
XþN

n¼�N

an2z�n; ð13Þ

where k ¼ 1=s
ffiffiffiffiffiffi
2p

p
and a ¼ expð�1=2s2Þ: Eq. (13) is

however not in the form of a ratio of polynomials and
thus translates into a pure convolution in the space
domain.
Jin et al. write the z-transform of the function they

intend to use as a Gaussian approximation in the form
of a ratio of polynomials:

SþðzÞ ¼ k
1þ a1z

�1 þ a2z
�2

1� pz�1ð Þ3
; ð14Þ

where a1; a2; and p are coefficients to be determined so
as to best approximate the Gaussian’s z-transform. As
for Deriche’s filter the sign + denotes the causal part
of the filter. It should be noted that the form of the
denominator, 1� pz�1

� �3
; means that Jin et al. choose

the recursion to be of order 3 and that there is a unique
pole of order 3. This guarantees, according to them, a
maximum region of convergence.
Then using polynomial division, Jin et al. are able to

write SþðzÞ as an infinite series in powers of z: The z-
transform of a Gaussian being also written as an infinite
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series in powers of z (Eq. (13)), it is possible to compare
the coefficients of SþðzÞ and those of the positive part of
GsðzÞ . As there are only three unknown coefficients in
the expression of SþðzÞ; three points of GsðzÞ are
sufficient to provide a set of equations with solutions.
It would be possible to determine the coefficients by a
least-mean-squares technique if more points were used.
In this paper we carried out the derivation for three

points because it does not require any numerical
optimization procedure and provides tractable closed-
form expressions for the filter’s coefficients. It can be
verified that the three first terms of the series (excluding
n ¼ 0) yield the set of equations:

3p þ a1 ¼ a; ð15aÞ

6p2 þ 3a1p þ a2 ¼ a4; ð15bÞ

6a1p
2 þ 3a2p þ 10p2 ¼ a9: ð15cÞ

Substituting the first two equations in the third we
obtain the third order equation in p:

p3 � 3ap2 þ 3a4p � a9 ¼ 0: ð16Þ

This equation admits three solutions including p ¼ a3:
However, upon testing, the best solution was found to
be the following:

p ¼
a
2
3� a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 6a2 � 3a4

p� �
: ð17Þ

All of the filter’s coefficients can be deduced from p:
As for the Deriche filter, the complete Gaussian

approximation filter SðzÞ is the sum of the causal part
SþðzÞ and the anti-causal part S�ðzÞ that can be deduced
from the causal part by symmetry.
For the readers interested in implementing Jin et al.’s

filter for themselves, we provide the difference equations
together with the expression of all the filter’s coefficients
in Appendix B.

2.3. Vliet et al. filtering [36]

While Deriche approximates the Gaussian function in
the space domain and Jin et al. in the z domain, Vliet
et al. carry out the procedure in the Fourier domain.
They take advantage of the fact that a Gaussian has a
simple closed-form Fourier transform (FT), which is, in
fact, another Gaussian.
Like Jin et al., Vliet et al. start by writing their

approximation function in the z domain. The manner in
which they do that, however, differs from Jin et al.’s.
Vliet et al. lay emphasis on the filter’s poles rather than
on the polynomial’s coefficients, although it is simple to
recover the coefficients from the poles:

HðzÞ ¼ HþðzÞH�ðzÞ ð18Þ
with

HþðzÞ ¼
YN
i¼1

di � 1

di � z�1
and H�ðzÞ ¼ ð�1ÞN

YN
i¼1

di � 1

z � di

;

where the di s are the poles of HðzÞ and N is the order of
the filter.
An inspection of Eq. (18) reveals the main differences

between Vliet et al.’s filter compared with Deriche’s and
Jin et al.’s:
(1)
 Vliet et al.’s filter consists of the multiplication of
the causal and anti-causal parts while for Deriche
and Jin et al. it is the sum. This point has important
consequences for the implementation of the filter.
(2)
 Vliet et al. force their filter to be purely recursive by
having no polynomial in z in the numerator.
The FT of the filter is obtained from its z-transform
by setting z ¼ expðiOÞ: The approximation process
consists of finding the poles di that minimize the error
measure:

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

Z p

�p
Gs Oð Þ � H Oð Þð Þ2dO

s
; ð19Þ

where GsðOÞ is the FT of the Gaussian function to be
approximated.
Because the gradient iterative minimization procedure

Vliet et al. use to find the poles is a numerical method,
they have to perform it for a chosen value of s and the
poles obtained are valid only for that particular value.
In their paper they chose s ¼ 2 . However Vliet et al. are
able to extrapolate their results to any other value of s
by the use of the scaling transformation:

h
n

q

� �
2ðdiÞ

1=q ð20Þ

which means that scaling the filter hðnÞ by a factor q in
the space domain is equivalent to performing the
transformation di-ðdiÞ

1=q on the poles of the filter’s z-
transform [40].
In theory, if we want to obtain a Gaussian of scale s

from a reference Gaussian of scale s ¼ 2; we should use
the transformation factor q ¼ s=2: In practise this
formula does not work well, a fact acknowledged by
Vliet et al. in their paper. However the function obtained
is a Gaussian, although of a scale different from the one
expected. It is possible to directly compute the real scale
of the obtained Gaussian using:

s2 ¼
XþN

n¼�N

n2hðnÞ: ð21Þ

Trying a set of values for q and computing the effective
scale s obtained, we were able to determine the
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following relation between q and s:

q ¼ 0:0001s4 � 0:0021s3 þ 0:0207s2 þ 0:3797sþ 0:1763:

ð22Þ

It should be noted that the fitting was done for the range
s ¼ ½1; 4�: For another range, a new appropriate fitting
should be done.
Once the new poles are determined using the

transformation factor q; the z-transform written as a
function of its poles (Eq. (18)) has to be put in the
orm of Eq. (2) so that the difference equation can be
easily deduced. In this paper we will limit the order of
the filter to 3 because higher order entails more
operations and order 3 was found to yield sufficient
accuracy. For N ¼ 3 the causal and anti-causal filters
can be written:

HþðzÞ ¼
a

1þ b1z�1 þ b2z�2 þ b3z�3
; ð23aÞ

H�ðzÞ ¼
a

1þ b1z þ b2z2 þ b3z3
; ð23bÞ

where the coefficients b1; b2; b3 and a can be expressed as
functions of the poles:

b1 ¼ �b d1d2 þ d1d3 þ d2d3ð Þ;

b2 ¼ b d1 þ d2 þ d3ð Þ;

b3 ¼ �b;

b ¼
1

d1d2d3
;

a ¼ 1þ b1 þ b2 þ b3: ð24Þ

As a summary we give a step-by-step procedure to
obtain a recursive Gaussian approximation using Vliet
et al.’s method:
(1)
 Compute the transformation factor q from the
chosen scale s using Eq. (22) (which is for the range
s ¼ ½1; 4�). � �1=q
(2)
 Compute the transformed poles di ¼ d0
i from

the original poles d0
i : Those are for the value s ¼ 2

and are provided by Vliet et al.:

d0
1 ¼ 1:4165þ i1:00829;

d0
2 ¼ 1:4165� i1:00829;

d0
3 ¼ 1:86543: ð25Þ
(3)
 Perform the left-to-right filtering using the causal
difference equation:

vðnÞ ¼ axðnÞ � b1vðn � 1Þ � b2vðn � 2Þ � b3vðn � 3Þ:

ð26Þ
The coefficients a; b1; b2 and b3 are obtained from
the poles di using Eq. (24).
(4)
 Perform the right-to-left filtering on the output vðnÞ
of the left-to-right filtering. The final output of the
filtering is given by

yðnÞ ¼ avðnÞ � b1yðn þ 1Þ � b2yðn þ 2Þ � b3yðn þ 3Þ:

ð27Þ

This last step is radically different from Deriche and
Jin et al.’s filters for which the final output is the
sum of the causal and anti-causal parts. This is
because Vliet et al. write the filter as the product of
the causal and anti-causal parts (Eq. (18)) while
Deriche and Jin et al. write it as the sum. This
difference can have important consequences in a
real-time implementation of the filters. With
Deriche and Jin et al.’s filters, the causal and
anti-causal filters can be implemented simulta-
neously in parallel while for Vliet et al.’s filter we
have to wait for the output of the causal filter before
we can start the anti-causal one.
3. Extension to the space-variant case

First it should be noted that the preceding exposition
was 1D for the sake of simplicity. The extension to the
2D case is straightforward thanks to the separability of
the Gaussian function. Once the 1D filtering has been
carried out on every line of the processed image, the
same 1-D filtering should be performed on every column
of the resulting image replacing left-to-right by top-to-
bottom and right-to-left by bottom-to-top. As for the
Vliet et al.’s method the line and column filtering have to
be implemented sequentially and not simultaneously
because the 2D z-transform of a separable function is
the product of two 1D z-transforms.
In the preceding chapters we have assumed, following

the papers we referenced, that the filters’ coefficients are
constants. That means filtering the whole image with the
same Gaussian, which is effectively what is required in
most cases. In the special application we are investigat-
ing, however, the scale of the Gaussian needs to be
changed at each pixel according to its location relative
to the center of the fovea. Performing a full convolution
with the desired Gaussian at each pixel would require
prohibitive amounts of computations. We therefore
want to investigate if recursive filtering can be modified
to perform space-variant filtering and how accurate it
can be.
The method we propose is to modify the difference

equation (Eq. (3)) to treat the coefficients of the filter ai

and bi as variables of the spatial coordinates ðx; yÞ: The
coefficients depend only on the scale s of the Gaussian,
which we can make a space-variant function i.e.
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Fig. 1. Implementation of Deriche and Jin et al.’s filter.
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s-sðx; yÞ: In this case ai and bi become functions of the
spatial coordinates too. In this paper we will assume
circular symmetry so that the scale, and therefore the
filter coefficients, are only variables of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

We can thus rewrite the general difference equation:

yðnÞ ¼
XN

i¼0

aiðrÞxðn � iÞ �
XM

i¼1

biðrÞyðn � iÞ: ð28Þ

Practically this means that we have to change the
coefficients of the filter at each pixel. In the preceding
chapters, we have expressed the coefficients of the three
recursive filters as functions of s (Eqs. (A), (B.1)–(B.3)
and 24). Those equations allow us to synthesize
Gaussians of any scales so that we can easily make the
scale vary continuously from the center of the image to
the periphery.
It would also be time-consuming to compute the

coefficients at each point in realtime. However, it should
be stressed that they can be precomputed, stored and
then accessed in a look-up table manner. Only the
difference equations need to be performed on the fly.
Figs. 1 and 2 are diagrams summarising the different

steps in the implementation of the filters. It can be seen
that Deriche and Jin et al.’s filters (Fig. 1) can lead to a
more parallel implementation than Vliet et al.’s (Fig. 2).
4. Performance evaluation and comparison

For a more complete description of the filters, we
measure their accuracy as Gaussian approximations in
three different ways:
(1)
 We first examine the impulse response of the filters
and compare them with real Gaussian functions.
(2)
 We consider the outputs of the filters obtained with
a test image. We also convolve this test image with a
real Gaussian kernel, which provides the reference
for accuracy comparison. At this stage we do not
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yet vary the scale with space. The whole image is
filtered with the same scale s:
(3)
 Finally we test the filters in the space-variant case.
Within the same image we make the scale vary from
s ¼ 1 in the center to s ¼ 4 at the corners. We also
perform the filtering painstakingly with different
Gaussian kernels at each point to provide the
comparison reference.
The impulse responses of the filters should be
Gaussian functions. Plotting them against the true
Gaussians they are designed to approximate give us a
qualitative idea of their performance. Figs. 3, 4 and 5
respectively show the 1D impulse responses of
Deriche’s, Jin et al.’s and Vliet et al.’s filters for four
values of s: The true Gaussian is plotted in diamonds.
It can be seen that Deriche’s filter (Fig. 3) appears
to provide a good fit at all scales. Jin et al.’s filter
(Fig. 4) seems to fit the Gaussian perfectly at low scales
but its results degrade as the scale increases. A possible
explanation for that behavior is that Jin et al.’s filter
is derived on matching only three points of the
true Gaussian. For a small scale a few points are
enough to describe the Gaussian completely because it
decays rapidly. However as the scale increases, it takes
more points for the Gaussian to decay and those
additional points are not taken in account by
Jin et al.’s filter. This is corroborated by Fig. 4 where
it can be seen that at s ¼ 4 the impulse response of Jin
et al.’s filter does not decay as much as the true
Gaussian. As for Vliet et al.’s filter (Fig. 5), some degree
of mismatch is noticeable at s ¼ 1 but the filter’s
accuracy improves as s increases. It is also useful to
visualize the 2D impulse responses of the filters as,
eventually, it is a 2D filter we wish to apply. Fig. 6
provides 3D views of the filters as well as a 2D section
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Fig. 3. 1D impulse response of Deriche’s filter. The real Gaussian is plotted in diamonds.
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view. The scale is s ¼ 4: It can be verified that all three
filters have good isotropy.
We also want a quantitative measure of the filters’

comparison with real Gaussians. We use a normalized
root-mean-square (rms) error measure defined as:

D1 ¼
1

ND

X
i; jð ÞAD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h i; jð Þ � gs i; jð Þð Þ2

q
gs i; jð Þ

; ð29Þ

where hði; jÞ is the impulse response of the filter and
gsði; jÞ is the actual Gaussian. To count only significant
values of the Gaussian, the domain D is restricted to
points whose distance is shorter than 3s from the center
of the Gaussian. ND is the number of points in D: From
Eq. (5) it is easy to verify that at n ¼ 3s the Gaussian
only retains 1.11% of its maximum value.
We evaluate D1 for four different scales, s ¼ 1; 2; 3; 4:

The results are provided in Table 1. Deriche’s filter
appears to be the most accurate and Jin et al.’s the least.
Both Deriche and Vliet et al.’s filters yield better
accuracy as the scale increases. By contrast Jin et al.’s
filter has excellent accuracy for s ¼ 1 but its perfor-
mance rapidly degrades as s increases. The behavior of
Vliet et al.’s filter could be explained in the same way as
that of Jin et al. The difference is that Vliet et al. carry
out their approximation procedure in the frequency
domain. It is well known that a small Gaussian in the
space domain will yield a large Gaussian in the Fourier
domain and conversely. Using a limited number of
points in the frequency domain it is therefore easier to
describe a large Gaussian completely than a small one.
Another way of looking at the filters’ performance is

to examine their outputs obtained with a test image.
This is a pragmatic approach as in the end it is the
processed image that is of practical interest. The test
image we used is an array of uniform random noise
shown in the top left of Fig. 7. The reason for using that
test image is that the effects of space-variant filtering are
more visible on uniform noise. That is because uniform
noise has a flat power spectrum where all frequencies are
equally represented whereas for a natural image the
power spectrum typically falls off rapidly as frequencies
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Fig. 4. 1D impulse response of Jin et al.’s filter. The real Gaussian is plotted in diamonds.
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increase. As a quantitative accuracy measure, we use a
normalized root-mean-square (rms) error similar to D1:

D2 ¼
1

N

X
ði; jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ihði; jÞ � Igði; jÞ
� �2q

Igði; jÞ
; ð30Þ

where Ih represents the test image processed with a
recursive filter and Ig the same image processed with real
Gaussian kernels. N in the total number of pixel in the
image. We first investigate the non space-variant case
where the whole image is filtered with the same value of
s: We use the same four values of s as in the first test.
The results are given in Table 2.
Although D1 and D2 seem to represent the same error

measure, D2 appears to produce dramatically lower
figures than D1: This is probably because in the first test,
by normalizing the error, we give an equal weight to
every point of the Gaussian. By contrast, when an image
is convolved with a Gaussian, the resulting output at
each pixel is mainly determined by the central values of
the Gaussian.
We note that Deriche and Vliet et al.’s filters perform
better with increasing scale while Jin et al.’s filter
displays the opposite behavior. That is consistent with
the first test. However, while Deriche’s filter seemed
more accurate in the impulse response comparison, Vliet
et al.’s filter performs better when it comes to filtering
actual images (except for the smallest scale s ¼ 1). This
might be because Vliet et al.’s filter models the central
part of the Gaussian function better than Deriche’s. In
fact, both Deriche and Vliet et al.’s filters yield very
good results. The error is below 1% in all cases and can,
as s increases, become much lower. That suggests that
using a recursive filter in the place of a costly Gaussian
convolution can be a practical solution.
Finally we test the filters in the space-variant case. We

make the scale vary from s ¼ 1 in the center of the same
test image (top left of Fig. 7) to s ¼ 4 in the corners. The
way in which s varies, or, in other words, the form of the
function sðrÞ; can be chosen by the user. It could for
example be made to fit the available data on the size of
receptive fields in the retina or alternatively the cortical



ARTICLE IN PRESS

-4 -3 -2 -1 0 1 2 3 4
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-8 -6 -4 -2 0 2 4 6 8
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

-15 -10 -5 0 5 10 15
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-20 -15 -10 -5 0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

1= 2=

3= 4=

�

� �

�

Fig. 5. 1D impulse response of Vliet et al.’s filter. The real Gaussian is plotted in diamonds.
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Table 2

Normalized rms error (%) of the filters measured on their outputs

obtained with the test image

s=1 s=2 s=3 s=4

Deriche 0.61 0.48 0.36 0.30

Jin et al. 0 4.7 12 18

Vliet et al. 0.93 0.18 0.10 0.082

Table 3

Summary of the main characteristics of the filters

Deriche Jin et al. Vliet et al.

Space-variant rms

accuracy (linear)

(%)

0.43 8.0 0.18

Space-variant rms

accuracy

(sinusoidal) (%)

0.46 8.1 0.23
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magnification [41–43]. For our test we chose two simple
functions, one linear and one sinusoidal, that we
respectively call s1ðrÞ and s2ðrÞ:

s1ðrÞ ¼ 1þ 3
r

L0
; ð31Þ

s2ðrÞ ¼ 2:5þ 1:5 cos p
r

L0
� 1

� �� �
; ð32Þ

where L0 is the distance between the center of the image
and any of its corners. The space-variant filtering is
implemented in the way described in Section 3. Fig. 7
shows the results for the sinusoidal scale function. As
for the convolution operation, the recursive filter is not
valid for the points at the borders of the image. That is
because recursive filtering is based on the output of
previous points and those pixels do not have previous
neighbors. Consequently those points are not shown in
Fig. 7, and they are not counted in the error estimation.
The original size of all images is 256� 256.
For a quantitative assessment we use the same error

measure as for the second test. The results, shown in
the first two lines of Table 3, are consistent with the
Deriche Jin et al.

Fig. 7. Original test image and outputs of the space-v

Table 1

Normalized rms error (%) for the 2D impulse response of the three

filters

s=1 s=2 s=3 s=4

Deriche 2.0 0.84 0.85 0.79

Jin et al. 0 18 41 56

Vliet et al. 19 7.3 6.0 5.5
previous test. Vliet et al.’s filter still appears to be the
best performing and Jin et al.’s the worse. It should be
noticed that for all three filters the error is bigger for the
Real Gaussians

Vliet et al.

ariant filters with the sinusoidal scale mapping.

Number of

multiplications

per pixel

24 24 16

Possibility of

parallel processing

for the causal and

anti-causal parts

Yes Yes No

Number of points

used in the filter’s

derivation

1000 3 Not known
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sinusoidal mapping of s than for the linear one. This
might be due to the steeper slope of s2ðrÞ in the middle
of its curve. Jin et al.’s filter seems to be the most robust
to the mapping change with a degradation of only 1.2%
while Vliet et al.’s normalized rms error went up by
28%. However, even with the worst degradation Vliet
et al.’s filter remains by far the most accurate filter. Even
in the sinusoidal case, Vliet et al.’s error is only half of
Deriche’s. It should be stressed that both Deriche and
Vliet et al.’s filter have very good performance in the two
scale mappings with less than 0.5% of normalized rms
error.
The relative weakness of Jin et al.’s filter can be

explained if we recall that the derivation of its
coefficients was based on only 3 points of a real
Gaussian. By comparison Deriche used 1000 points in
his optimization procedure. Jin et al.’s method could be
used with more points but we would have to resort to
a numerical procedure and would lose the benefit of a
compact closed-form expression for the filter’s coeffi-
cients. Of the three filters Jin et al.’s is the only one that
relies uniquely on non-numerical expressions (Eq. (17)
and (B.3)). Considering the fact that is was derived with
only 3 points of a real Gaussian, the results of Jin et al.’s
filter can in fact be viewed as rather impressive. In the
two scale mappings its normalized rms error is only of
8%.
The other crucial factor to be taken into account

when assessing the filters’ performance is the computa-
tional complexity that will determine the speed at which
the filters can be implemented. The number of multi-
plications required per pixel is a good indicator of a
filter’s complexity. By examining the filters’ difference
equations it is easy to count the number of multi-
plications required per pixel. It should be reminded that
there are four passes per pixel, two horizontal and two
vertical. With that in mind we obtain that both Deriche
and Jin et al.’s filters require 24 multiplications per pixel
whereas Vliet et al.’s needs only 16. Those figures are
independent of the value of s chosen. For comparison,
performing a direct convolution (two 1D convolutions)
with Gaussian kernels would require 16 multiplications
per pixel for s ¼ 1 and 64 for s ¼ 4:
5. Conclusion

Table 3 sums up the main facts about the three
recursive filters. First it should be stressed that both
Deriche and Vliet et al.’s filters appear to be convincing
candidates to approximate Gaussian convolution at
high speed. The error they produce when compared to
the output obtained with real Gaussian kernels is less
than 0.5% in the space-variant case and less than 1% in
the constant scale case. Both filters require a competi-
tively low number of multiplications per pixel. More-
over their performance further improves with increasing
scales. Vliet et al.’s filter appears to be more attractive in
both accuracy and low complexity. However it should
be reminded that Deriche’s filter allows a more parallel
implementation. This could cancel out Vliet et al.’s
advantage. In addition, the first two error tests both
indicate that Deriche’s filter is more accurate at small
scales. This point could have its importance depending
on how large one wants the fovea to be.
It should be noted that we have not used Jin’s method

to its full potential. If one is willing to give up elegant
coefficient expressions for numerical optimization
procedures, Jin et al.’s filter could prove to be as
competitive as Deriche’s or Vliet et al.’s.
Finally, recursive filtering appears to be the natural

way to perform space-variant Gaussian processing
because of the ease with which the scale can be changed
within the same image. Changing the scale simply entails
changing the filter’s coefficients and those coefficients
are continuous functions of s; which allows Gaussians
of any scale to be synthesized.
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Appendix A. Coefficients for Deriche filtering

dþ
1 ¼ d�

1 ¼ �2cos
1:475

s

� �
exp �

1:512

s

� �
� exp �

1:556

s

� �
;

dþ
2 ¼ d�

2 ¼ 2cos
1:475

s

� �
exp �

3:068

s

� �
þ exp �

3:024

s

� �
;

dþ
3 ¼ d�

3 ¼ �exp �
4:58

s

� �
;

nþ
0 ¼ 1:0051k;

nþ
1 ¼ k 1:021sin

1:475

s

� �
� 2:9031 cos

1:475

s

� �� �

exp �
1:512

s

� �
þ 0:8929k exp �

1:556

s

� �
;

nþ
2 ¼ � k 1:021sin

1:475

s

� �
þ 0:8929 cos

1:475

s

� �� �

exp �
3:068

s

� �
þ 1:898k exp �

3:024

s

� �
;

n�
1 ¼ nþ

1 � dþ
1 nþ

0 ;

n�
2 ¼ nþ

2 � dþ
2 nþ

0 ;

n�
3 ¼ �dþ

3 nþ
0 ; ðAÞ

where k ¼
1

s
ffiffiffiffiffiffi
2p

p .
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Appendix B. Coefficients for Jin et al. filtering
Sþ zð Þ ¼ k
1þ a1z

�1 þ a2z
�2

1þ b1z�1 þ b2z�2 þ b3z�3
2yþ nð Þ ¼ k x nð Þ þ a1x n � 1ð Þ þ a2x n � 2ð Þf g

� b1y
þ n � 1ð Þ þ b2y

þ n � 2ð Þ þ b3y
þ n � 3ð Þ

� �
; ðB:1Þ

S� zð Þ ¼ k
a3z þ a4z

2 þ a5z
3

1þ b1z þ b2z2 þ b3z3
2y� nð Þ ¼ k a3x n þ 1ð Þ þ a4x n þ 2ð Þ þ a5x n þ 3ð Þf g

� b1y
� n þ 1ð Þ þ b2y

� n þ 2ð Þ þ b3y
� n þ 3ð Þf g ðB:2Þ
b1 ¼ �3p;

b2 ¼ 3p2;

b3 ¼ �p3;

a1 ¼ a� 3p;

a2 ¼ a4 � 3ap þ 3p2;

a3 ¼ a1 � b1;

a4 ¼ a2 � b2;

a5 ¼ �b3: ðB:3Þ

As for Deriche’s filter the final result is the sum of the
left-to-right recursion, yþðnÞ; and the right-to-left recur-
sion, y�ðnÞ:
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